OpenDICE (v1.2) User Manual

Lei He

lehe@loc.gov

1-202-707-8239

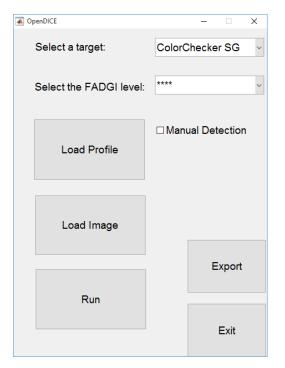


Figure 1. OpenDICE user interface

- 1. In the interface (Figure 1), the default setting for the target is ColorChecker SG. User may change it to DICE.
- The default FADGI level for image quality assessment is 4 star, which may be changed to 3 or 2 star. If the analysis results fail to meet 2 star level, then it's 1 star level. A configuration file is provided to allow the user change the criteria settings (Figure 2). The current values follow the specifications in FADGI v2010.

🗶 🔄 🤊 - 😢 - 🖛 Config.xlsx - Micr — 🗖 🗙											
Fi	ile Hon Inse P	agi Forr Da	ata Revi Viev		e x						
Pas	te	alignment Nur	% 🔬 mber Styles		- 21 - 21 - 21 - 21 - 21 - 1						
Clipt	Clipboard 🕞 Editing										
	D18	- (a	f_x		v						
	А	В	С	D							
1	FADGI Criteria	****	***	**							
2	Hi_freq Low	0.95	0.9	0.8							
3	Hi_freq Up	0.2	0.3	0.4							
4	Mid_freq Low	0.45	0.35	0.25							
5	Mid_freq Up	0.65	0.75	0.85							
6	Sampling Freq	0.005	0.0075	0.015							
7	Nyquist Amp	0.2	0.3	0.4							
8	Sharpening	1	1.1	1.2							
9	OECF band	3	6	9	=						
10	White Balance	3	4	6							
11	Uniformity	0.01	0.03	0.05							
12	Noise	2.5	4	6							
13	Max DeltaE	6	10	15							
14	Mean DeltaE	3	5	10							
	Max DeltaEab	3	5	8							
	Mean DeltaEab	2	3	6							
17	Color Regis	0.33	0.5	0.8							
18											
19					-						
14	Image: A market Sheet1 Sheet2 Sheet1 Image: A market Ima										
Read	dy E	■□□□ 1	00% —	-0	-+ .:						

Figure 2. FADGI criteria values

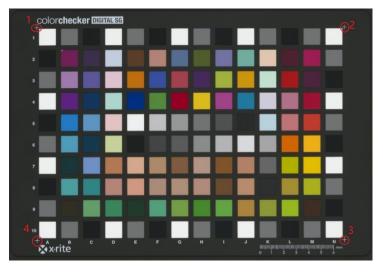
(1). User will load the profile first according to the target selection. It should be an Excel file, with the measurements as the ground truth for color accuracy assessment (L*a*b*) and tonescale analysis (density), respectively. For example, a DICE profile and a Colorchecker SG profile are shown in Figure 3 and Figure 4.

(2). The profile format is strictly defined, with the L*, a*, b*, and D as the table head. The patches are listed from 1 to 30 (DICE), or from A1...A10 to N1...N10 (Colorchecker SG).

(3). Note that the DICE target has density measurements for its 12 gray patches (#10 - #21), and Colorchecker SG target has density measurements for its central 12 gray patches (#E5 - #J6).

(4). The profile must match with the selected target, otherwise an error message will be displayed. Then user may reselect either the profile or target.

x] 🖯 Ŝ× ĉ× ∓		Profile_DIC	E_6.xlsx - Exc	el		? 🛧	- □	×	
F	ILE HOME INSERT PAG	GE LAYOUT	FORMULA	S DATA	REVIEW VI	EW Acrob	oat 👍 Fay	Tang 🔻		
Pa	$\begin{array}{c c} & & \\ \hline \\ \hline$	1 - A A Align	mment Num	6 Regional Co	nditional For mat as Table II Styles •	matting -	Cells Edit	6		
Clip	pboard 🖬 🛛 Font	E.			Styles				~	
$\boxed{\texttt{E2}} : \overleftarrow{f_x} \overleftarrow{f_x}$										
	А	В	С	D	E	F	G	Н		
1		L*	a*	b*	D					
2	Patch 1	38.61	13.1	14.1						
3	Patch 2	64.65	17.92	18.45						
4	Patch 3	49.49	-5	-21.46						
5	Patch 4	43.2	-13.11	21.85						
6	Patch 5	55.18	8.76	-23.86						
7	Patch 6	69.73	-33.52	-0.78						
8	Patch 7	62.02	33.86	57.48						
9	Patch 8	39.73	10.86	-43.85						
10	Patch 9	52.3	47.63	17.16						
11	Patch 10	96.12		1.83	0.04					
12	Patch 11	91.26		0.13	0.09					
	Patch 12	86.23	-0.83	0.32	0.15					
	Patch 13	81.19	-1.06		0.22					
	Patch 14	71.12			0.36					
	Patch 15	61.39			0.51				_	
	Patch 16	49.11	-0.54		0.75					
	Patch 17	38.04	-0.31		0.98				_	
	Patch 18	28.14			1.24				_	
	Patch 19	16.69	-0.49		1.67				_	
	Patch 20	7.42								
	Patch 21	6.43	-0.59		2.42					
	Patch 22	31.26								
	Patch 23	70.87								
	Patch 24	71.02								
	Patch 25	29.6							_ _	
	Patch 26	54.12							_	
	Patch 27	43.25								
	Patch 28	80.75							-	
	Patch 29	51.95								
31	Patch 30	50.25	-28.28	-28.17					-	
	← → Sheet1	\oplus			÷ •				F	
REA	ΔΥ			E	■]		-+ 100	1%	


Figure 3. DICE target profile with the L*a*b* and density (D) measurements

	FILE	HO		INSE	PAG	FO	R	DAT	REVI	VI	E Acro	🔔 Fa	ay Tan	g -	
Γ	ĉ	A	1		≡		%		🛱 Con	diti	onal Forr	natting	-		
L								- F			as Table				
lip	board	Fo	nt	Alig	Inment	Nu	mb)er	Cell :				0	Cells	
	Ť				Ť		*		Second	JUY				Ť	
											Styles				^
G	33		-	1:	\times			1	fx						~
-				_ ·	-		-	J		_					. · ·
	A		B		С	_	[)	E	_	F	G	_	Н	
1	4.1	Ľ		0.005	a*	b			D	-			_		
2 3	A1 A2			2985 5935	-0.545	_		5096 0118		+			_		
4	A3			5154	-0.310	_		3653		+			_		$\left \right $
5	A4	_		0415	-0.485	_		5149		1					
6	A5		10.5	923	-0.267	4	-1.	1508							
7	A6			5400	-0.330	_		3381		_			_		
8	A7			9526	-0.502			5657		_					
9 10	A8 A9			3874 1682	-0.137	_		0766 3523		+			_		
11	A9 A10			0029	-0.319	_		6006		+					
12	B1	_		1967	-0.307	_		3672		+			_		
13	B2		32.3	8653	51.366	6	-9.	5427							
14	B3			3987	26.501					_					
15	B4			5267	49.767	_		5218		_			_		
16 17	85 86			7842	-14.639 -29.824	_				+			_		
18	B7				-25.390	_		5301		+					
19	B8	_			-39.323	_				+			_		
20	B9		18.7	7166	1.840	5	13.	5833							
21	B10			3193	-0.325	_		3267		_					
	C1			7087	-0.809	_		0684		_					
	C2 C3			3979 0532	19.741 19.236	_		3000 6173		+			_		
25	C4			3193	0.050	_		5187		+					
	C5				-16.878	_				+					
27	C6		19.5	5360	-17.833	5 -	21.	9442							
28	C7			240	-5.068										
29	C8	_			-47.660	_				_					
30 31	C9	_			-39.547			7771		+			_		
51 32	C10 D1			3559 0416	-0.369	_		8035 5184		+			_		
33		_		3154	-1.679	_		3638		+					
	D3			5238		_	-	6289							
	D4				-19.343	_		1577							
	D5			5380		_		7844		_					
37	D6 D7				-11.883			8741 7664		+			_		
58 39				5088 5373		_		7664 8030		+					
40					-53.454	_		8062		+			_		
	D10			9202	-0.515			4722							
	E1		49.5	5449	-0.334	_		3185							
	E2			478		_		5671		_					
	E3			3556		_		0939		+					
	E4 E5			5480 1938	22.868			0487 4307	0.0	5			_		-
	E6			3849		_		4307 6829	1.8						
	E7			3084		_		5270							
_					ok1		nee		. (+)						

Figure 4. Colorchecker SG target profile with the L*a*b* and density (D) measurements

- 4. After loading the profile, user may import the target image for quality assessment. Similarly, the image must match with the target. Otherwise an error message will be display for re-selection. With the current version, OpenDICE support only well scanned images with tilt angle less than 5°, i.e., no automatic rotation or adjustment is applied to the input image.
- 5. Once the image is loaded, the regions of interest (ROI) on the image will be automatically identified, as shown with the rectangles. User may resize or drag the rectangles for minor location adjustment. If the ROI are far away from the ideal regions, manual selection is suggested, i.e., user check the Manual Detection option and load the image again.

Note that manual detection generally provides faster and more accurate ROI identification, with the user interaction. User must click the four corner points (for DICE targets) or cross points (for Colorchecker SG) in a clockwise manner (double click is needed for the last click on point 1 when finish the loop), see Figure 5.

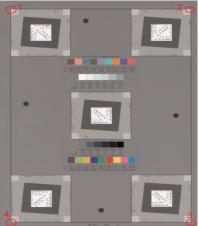


Figure 5. Landmark points for user manual selection to identify the ROI

6. Once the ROI are identified, user will see the images overlapped with a set of rectangles, see Figure 6. In this identification process, user cannot click any buttons on the interface. Again, user may be drag or resize the rectangles for more accurate location. Depending on the image size, this step may take a couple of minutes to identify the ROI on Colorchecker SG images. In such cases, we recommend Manual Detection option before loading the image.

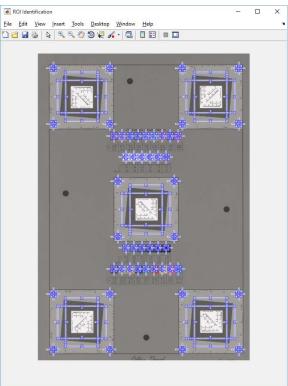


Figure 6. ROI identification for Colorchecker SG and DICE target images.

7. User confirm the ROI are acceptable, then click Run button to start assessment. The assessment results are displayed on two (Colorchecker SG target) or three (DICE target) windows. For the Colorchecker SG target, the first window displays color accuracy analysis results and the second window presents tonescale analysis results. DICE target images have the third window for resolution analysis results.

(1). Color accuracy window consists of four tabs: Luminance, Delta E 2000, Color Registration Accuracy, and Summary.

Luminance tab shows the difference between the aim (ground truth from the measurements) and the actual image values for all patches, as shown in Figure 7.

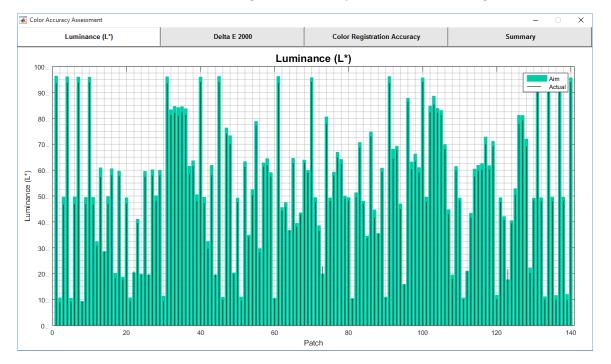


Figure 7. Luminance tab in Color Accuracy Analysis window

Delta E 2000 tab shows the Δ E2000 between the ground truth and the actual image values for all patches, as shown in Figure 8. The vertical black lines with black dots represent the actual Δ E2000 values, and the vertical red lines with red dots show the actual Δ E2000(a*b*) values. The horizontal magenta line shows the maximum upper limit for Δ E2000 according to the user FADGI level selection. Similarly, the horizontal blue line shows the mean upper limit for Δ E2000. The horizontal black line shows the actual mean Δ E2000, and the horizontal green line shows the actual median Δ E2000.

Summary tab shows the detail results (value) according to the FADGI guideline performance level (lower limit and upper limit), see Figure 10.

Color Accuracy Assessment				– 🗆 X		
Luminance (L*)	Delta E 2000	Color Registrat	ion Accuracy	Summary		
	FADGI Performance Leve	l:4 star				
Measurements	Pass/Fail	Lower Limit	Value	Upper Limit		
Max DettaE 2000	Pass	0.0	5.6	6.0		
Mean DeltaE 2000	Pass	0.0	2.5	3.0		
Median DeltaE 2000			2.4			
Max DeltaE(a*b*) 2000	Fail	0.0	5.5	3.0		
Mean DeltaE(a*b*) 2000	Pass	0.0	1.8	2.0		
Median DeltaE(a*b*) 2000			1.6			
A1 DeltaE 2000	Pass	0.0	2.2	6.0		
A2 DeltaE 2000	Pass	0.0	2.6	6.0		
A3_DeltaE 2000	Pass	0.0	3.6	6.0		
	Pass	0.0	2.0	6.0		
- A5 DeltaE 2000	Pass	0.0	2.8	6.0		
_ A6_DeltaE 2000	Pass	0.0	3.5	6.0		
	Pass	0.0	2.0	6.0		
A8_DeltaE 2000	Pass	0.0	2.8	6.0		
A9_DeltaE 2000	Pass	0.0	3.5	6.0		
A10_DeltaE 2000	Pass	0.0	2.0	6.0		
B1_DeltaE 2000	Pass	0.0	3.4	6.0		
B2_DeltaE 2000	Pass	0.0	1.7	6.0		
B3_DeltaE 2000	Pass	0.0	3.6	6.0		
B4_DeltaE 2000	Pass	0.0	1.4	6.0		
B5_DeltaE 2000	Pass	0.0	2.9	6.0		
36_DeltaE 2000	Pass	0.0	2.3	6.0		
B7_DeltaE 2000	Pass	0.0	3.6	6.0		
B8_DeltaE 2000	Pass	0.0	1.9	6.0		
B9_DeltaE 2000	Pass	0.0	4.5	6.0		
B10_DeltaE 2000	Pass	0.0	3.3	6.0		

Figure 10. Summary tab in Color Accuracy Analysis window

(2). Tonescale analysis window consists of four tabs: OECF Curves, Difference to Aim, White Balance, Uniformity, Noise, and Summary.

OECF tab shows the OECF curves for RGB and luminance components, as shown in Figure 11. User may change the gamma, gain, and offset to adjust the curves in order to fit them into the range defined by the current FADGI level (magenta curves).